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Abstract
This paper introduces a new approach using Neural Radiance Field to explore large scenes containing objects of interest. The
input views are partitioned into two groups: scene and object. The first group represents the general scene with one or more
NeRFs, while the second one uses a single NeRF per object of interest for more accurate representations, e.g., in the context
of cultural heritage preservation. The generation of novel views is achieved by inferring both groups and selecting one of the
inferred colors per pixel based on the estimated depth. The method has been tested on both synthetic and real-world datasets.
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CCS Concepts
•Computing methodologies → Image-based rendering; Learning latent representations; Shape representations; Appear-
ance and texture representations; Virtual reality; Interactive simulation; •Hardware → Displays and imagers;

1. Introduction1

The acquisition of 3D digital twins of cultural heritage for the pur-2

poses of archiving, conservation, archaeology or museography has3

become commonplace. Until now, photogrammetry and Lidar sur-4

veying have been the main techniques used. However, a new tech-5

nique called Neural Radiance Field (NeRF [MST∗21]) has recently6

emerged. It is a novel view synthesis method based on a neural rep-7

resentation of a scene that is trained from a set of input images with8

known poses. The apparent simplicity of its principle, coupled with9

the unprecedented quality of the images it produces, has spurred a10

tremendous quantity of new contributions and developments.11

This paper addresses the challenge of exploring a potentially12

large-scale area containing objects of interest that a user might want13

to inspect more closely and for which more, or higher resolution14

data, may be available. In the cultural heritage domain, examples15

of such objects could be statues or architectural elements found in-16

side a church or a cathedral. Liu et al. [LGL∗20] proposed using17

a NeRF coupled with a sparse voxel grid as an adaptive 3D repre-18

sentation to tightly represent geometrical details. However, using19

a single NeRF makes it difficult to achieve a high level of detail20

over large areas without incurring prohibitive computation times or21

memory requirements. Others [TCY∗22, TRS22] suggested parti-22

tioning the space and training a NeRF by 3D sub-spaces without23

considering the presence of objects of interest. Our method relies24

on separating NeRFs into two groups: a scene group composed of25

a single or multiple NeRFs representing the entire scene with low26

to medium level of detail, and an object group with a NeRF per ob-27

ject that provides improved, local resolution for close-ups. These28

groups use different sets of images created during acquisition, with29

overall views for the scene group and more focused views of ob-30

jects of interest for the object group.31

In the rest of this paper, we will provide a brief overview of the32

NeRF principle in Section 2; then introduce the concepts and im-33

plementations we will be using, and explain how to train the two34

NeRF groups and combine their inference to create a new view in35

Section 3. Subsequently, we will present our results on both syn-36

thetic and real-world datasets in Section 4. Next, the limitations37

of the method and perspectives for improvements are described in38

Section 5. Finally, Section 6 will conclude the paper.39

2. Neural Radiance Fields40

The NeRF method takes as input a set of images with known poses41

(i.e., position, orientation, field of view angle, etc.). It relies on42

the generation of images by differentiable volume rendering, in43

which rays emitted from cameras traverse a finite cubic volume.44

Pixel colors can be obtained by accumulating densities σ and colors45

c = (r,g,b) inferred at samples along the rays using a Multi-Layer46

Perceptron (MLP) network that inputs the 3D position x = (x,y,z)47

of the sample and the direction d = (θ,φ) of the ray. During train-48

ing, the squared errors measured from pixels in the known input49
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Figure 1: CompoNeRF Principle. (a) View types. (b) Scene and object NeRF training on two subgroups of images and camera poses with
their respective AABBs. (c) Rendered images from Scene and object NeRFs. (d) Composite image achieved through multi-inference.

images are back-propagated through differentiable volume render-50

ing to update the MLP weights by gradient-retro propagation. As51

a result, NeRF MLP learns a latent representation of the geometry52

and directional appearance of the scene. At inference, novel views53

from unknown new camera poses can be generated using the same54

direct volume rendering technique.55

3. Proposed method56

3.1. Platform57

Our implementation is based on Nerfstudio [TWN∗23], a Python58

software platform that embeds different NeRF flavors, including59

Nerfacto. This one implements a state-of-the-art NeRF method that60

incorporates the most interesting improvements suggested by the61

literature and is also the default recommended method on Nerfstu-62

dio due to its superior performance. In particular, by implement-63

ing ideas from [BMV∗22], it is capable of handling unbounded64

scenes where cameras can view in any direction inside a volume65

and observe a background beyond the volume. Additionally, it66

uses a 3D multi-level uniform grid structure of features inspired67

by [MESK22]. This structure enables faster computation times dur-68

ing both the training and inference stages by significantly reducing69

the MLP size. It also allows the level of detail representation of the70

scene to be controlled by adjusting two parameters: Nmax, the finest71

resolution per axis of the highest grid level, and T , the fixed size of72

the hash tables on the GPU containing the features per level.73

3.2. Learning overview74

In our setting, we consider general views of the scene and close75

up on objects of interest like shown in Figure 1a. Our goal76

is to use both image types during training to target different77

NeRFs/MLPs, and adequately merge the information from the dif-78

ferent sources/MLPs during inference. During acquisition, for ease79

of use, general views are typically taken with cameras equipped80

with wide-angle lenses or 360 panoramic cameras. These views are81

used to train a set of scene NeRFs. In this paper, only one NeRF82

with unbounded properties is used. The finite volume of the NeRF83

is defined as the Axis Aligned Bounding Box (AABB) enclosing84

all camera positions and extended by a small margin (shown as a85

dotted red line in Figure 1b). Moreover, close-up views of objects86

of interest are taken with cameras potentially equipped with lenses87

with lower near-field distance and a narrower field of view. These88

images are used to train a bounded NERF whose volume is also89

the AABB enclosing the object camera poses (shown as a dotted90

green line in Figure 1b). In this preliminary work, only one object91

is considered. Note that the object’s geometry and appearance are92

thus learned by both scene NeRF and object NeRF.93

3.3. Multi-Inference94

In order to generate a novel view, both scene and object NeRFs95

must infer an image each, as shown in Figure 1c. When creating96

the final image, a color is selected for each pixel based on its es-97

timated depth. If the first point on the surface along the camera’s98

ray is within the object NeRF’s AABB, then the pixel color is in-99

ferred from that NeRF. Otherwise, the scene NeRF pixel color is100

used. This method is effective for handling objects with intricate101

geometry, concave shapes, or even holes, as shown in Figure 2.102

4. Results103

4.1. Datasets104

Lone Monk. A synthetic dataset of images was generated using105

Blender from the SILVR dataset [CAP∗22] for the Lone Monk106

scene. The scene NeRF was trained from 10400 images taken107

throughout the entire cloister and looking all around, while the108

object NeRF was trained from about 700 images rendered with109
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Figure 2: Multi-Inference. The green first contact point is within
the object NeRF’s AABB, the pixel color is inferred from that
NeRF. Otherwise, red point, the scene NeRF pixel color is used.

the same camera parameters, focusing on the well at the center.110

All images are rendered at 2000 × 2000 pixels from viewpoints111

sampled on a path that begins around the well and then goes112

around the cloister and finally into the corridors and ends at the113

starting point.114

115

Montmajour. Our method was tested on a very similar real-116

world scene, a cloister in Montmajour, a medieval abbey located in117

the south of France. We captured 920 images with 20 and 24 mm118

wide-angle lenses, which were then used to train the scene NeRF.119

And 180 images of the well were taken with 24 and 50 mm lenses120

and used to train the object NeRF. All images are at 6048× 4024121

pixels resolution.122

On both datasets, we choose 15 overall images containing the123

object of interest for testing. The poses of all the cameras were124

retrieved in a single reference system using a standard Structure125

from Motion algorithm from Metashape.126

4.2. Comparisons127

To evaluate our model, we compare it against Nerfstudio’s de-128

fault state-of-the-art method, Nerfacto. The baseline method cho-129

sen is Nerfacto-huge, a larger parameter version of Nerfacto. It uses130

Nmax = 16384 and a hash table size of T = 23. We train this model131

for 100K iterations with all the images, including scene general and132

object close-up views.133

Our CompoNeRF method consists of scene NeRF and object134

NeRF, both based on the Nerfacto model and both utilizing the135

same hash table size (T = 23). However, the object NeRF employs136

a higher definition with Nmax = 16384, while the scene NeRF uses137

Nmax = 8192. The smaller AABB on the object NeRF implies a138

higher level of detail for the object of interest. We train these two139

models separately, each for 50K iterations, which is half the number140

of iterations used in the baseline. We opted for the highest defini-141

tion and twice the number of iterations as the baseline to ensure an142

equal and fair comparison with our CompoNeRF models.143

We first evaluate our method on the synthetic Lone Monk144

dataset. As shown in Figure 3a, CompoNeRF is capable of ren-145

dering small details on the well, such as the chain in the middle.146

However, our model still has limitations, as it misses the end of the147

chain which disappears into the well while it is not the case for the148

ground truth. Furthermore, we observe a higher level of detailed149

texture on the pillar when compared to the baseline method.150

Next, the methods are evaluated on the real-world Montmajour151

dataset. With CompoNeRF, the well and the ground in its surround-152

ings are rendered very precisely, while the rest of the cloister, in-153

cluding the farther background, is displayed with a coarser level of154

detail see Figure 3b. In particuliar, we can observe more detail on155

the surface of the well and on the gravel particles on the stone shelf156

than in Nerfacto-huge.157

Method Training
time (h)

Rendering
time (s)

PSNR↑ SSIM↑ LPIPS↓

CompoNeRF 4.5 12.8 26.79 0.820 0.214
Scene NeRF 3.3 6.5 25.52 0.791 0.267

Nerfacto-huge 6.6 6.5 25.69 0.790 0.246

Table 1: A quantitative comparison of methods on the Lone Monk
scene

Method Training
time (h)

Rendering
time (s)

PSNR↑ SSIM↑ LPIPS↓

CompoNeRF 9.9 103.7 19.80 0.523 0.566
Scene NeRF 5.6 52.3 19.02 0.500 0.695

Nerfacto-huge 11.5 53 19.41 0.510 0.648

Table 2: A quantitative comparison of methods on the Montma-
jour scene

For each dataset, Table 1 and Table 2 compare the methods,158

showing the rendering quality (PSNR, SSIM, and LPIPS metrics)159

as well as the training and rendering time. We can see that our Com-160

poNeRF outperforms the baseline approach when averaged across161

scenes. In our setup, we train all methods using a single 80 GB162

A100 GPU on a DGX station. The total training time for both the163

scene and object NeRFs of our method is faster than the entire train-164

ing time of the baseline method (10–20% faster). However, it’s im-165

portant to note that the need to render the same image twice makes166

the image rendering time double compared to the baseline method.167
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(a) Test-set views of synthetic Lone Monk scene (b) Test-set views of real-world Montmajour scene

Figure 3: We compare the scene rendering quality with the Nerfacto-huge baseline on both datasets.

5. Limitations and Perspectives168

Despite its superiority, our model also has limitations.169

First, images focused on the object also capture the surrounding170

area; however, object NeRF may not accurately infer this area as the171

camera poses were not specifically focused on it. As a result, when172

composing the final image, blurry and poorly rendered boundaries173

may occur around the object. A possible solution involves tighten-174

ing the AABBs around the objects. To achieve this, we could per-175

form segmentation on 2D images to reconstruct consistent masks176

for objects of interest, inspired by Object-NeRF [YZX∗21]. With177

these object masks, AABBs could be refined either by intersect-178

ing 3D mask frustum photogrammetry or by propagating image179

mask IDs to 3D sparse point cloud extracted from SfM algorithms,180

by taking inspiration from K3BO [JRZ23]. Another approach is181

to employ 3D segmentation after estimating the object’s geometry182

through rapid training of a NeRF model on the object.183

In the scenario with multiple objects of interest in the scene, ren-184

dering time will be proportional to the number of objects, resulting185

in a significant increase in the total time required for final image186

composition. A straightforward optimization would be to discard187

objects that are not within the current view frustum. This could be188

easily and efficiently performed using the tightened AABBs men-189

tioned above. Similarly, the resolution of distant objects could be190

inferred by the scene NeRF model, as long as a lower or medium191

level of detail image is sufficient.192

In order to handle large-scale scenes, we could generalize the193

use of multiple NeRF models with space partitioning techniques194

inspired by e.g., Block-NeRF [TCY∗22], Mega-NeRF [TRS22].195

In the real-world Montmajour dataset, alongside the RGB image196

data, a 3D point cloud scan from LiDAR with millimeter precision197

was also captured. For the primary focus of this paper, we exclu-198

sively utilize the RGB image data to maintain consistency for com-199

parison with current state-of-the-art methods. Nevertheless, the op-200

portunity exists to leverage the geometric information provided by201

the 3D point cloud in training NeRFs, like in DS-NeRF [DLZR22]202

or PointNeRF [XXP∗22], to potentially achieve improved perfor-203

mance.204

Finally, up to this point, the division of images into groups has205

remained a manual process, resulting in still having images focused206

on the object of interest within the scene group. Subsequently, a207

simple algorithm will be developed to identify all cameras that view208

the object of interest AABB in sufficient detail, grouping them to-209

gether for the training of the corresponding object NeRF.210

6. Conclusion211

A new technique has been introduced for virtually exploring scenes212

offering improved resolution for objects of interest, for which de-213

tailed input images are provided. CompoNeRF involves multiple214

NeRFs that generate images for general views as well as detailed215

views of specific objects. This approach takes advantage of the216

fast training capabilities of recent state-of-the-art methods and suc-217

cessfully achieves high rendering quality. Moreover, by modify-218

ing an existing NeRF implementation, such as the one suggested219

by Instant-NGP [MESK22], or even adapting a non NeRF method220

such as 3D Gaussian Splatting [KKLD23], our method provides221

the framework for interactive visits to complex heritage sites using222

a VR headset.223
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